Skip to main content Skip to main navigation menu Skip to site footer

Phytochemical Screening and in vitro Antimicrobial Activity of Dracaena Afromontana Leaves


Dracaena afromontana is a native species grown in the high mountain rainforest of Rwanda. This plant finds many traditionally medicinal uses in the treatment of chest pain, dermatitis, liver diseases and malaria. In this report, the dried Bay leaves were extracted with n-hexane, ethyl acetate and methanol by maceration giving 0.717 g (1.434%), 1.457 g (2.914%) and 6.319 g (12.64%) respectively. The extracts were concentrated for further phytochemical screening and evaluated for antimicrobial activity against E. coli and S. aureus using well diffusion method. In addition, the dracaena afromontana extracts were analyzed using thin layer chromatographic separation techniques leading to the identification and characterization of bioactive compounds including, terpenoids, flavonoids, tannins, phenols, saponins, reducing sugar and quinones. The results from TLC indicate that the higher retention factor (Rf2 = 0.77) was obtained via the use of ethyl acetate, whereas n-hexane gave a retention factor (Rf3 = 0.558). On the other hand, the methanol extract did not show any separation. The antimicrobial assay for the extracts was carried out using Lurial broth agar and Manitor salt over lay method. The findings of antimicrobial assay showed that methanolic extract of dracaena afromontana leaves has an antibacterial activity against the gram negative bacteria E.coli with the zone of inhibition of 16 mm, while the antibacterial activity of ethyl acetate extract against E. coli showed a smaller inhibition zone of 10 mm for diluted inoculums (10-2 and 10-1). For the gram positive bacteria S. aureus the inhibition zone by Dracaena afromontana was insignificant, whereby the methanolic and ethyl acetate extracts showed a maximum inhibition zone of 4 mm and 3 mm respectively. The n-hexane extract did not show any antibacterial activity against both pathogenic organisms.


  1. Azwanida, N. N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants, 4(196), 2167–0412.
  2. Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and Chemical Toxicology, 46(2), 446–475.
  3. Banso, A., & Adeyemo, S. (2006). Phytochemical screening and antimicrobial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri, 18(1).
  4. Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4_ts), 493–496.
  5. Bloesch, U., Troupin, G., & Derungs, N. (2009). Les plantes ligneuses du Rwanda: flore, écologie et usage. Shaker.
  6. Bogawski, P., Damen, T., Nowak, M. M., Pędziwiatr, K., Wilkin, P., Mwachala, G., Wiland-Szymańska, J. (2019). Current and future potential distributions of three Dracaena Vand. ex L. species under two contrasting climate change scenarios in Africa. Ecology and Evolution.
  7. Chase, M. W., Reveal, J. L., & Fay, M. F. (2009). A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Botanical Journal of the Linnean Society, 161(2), 132–136.
  8. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.
  9. Croteau, R., Kutchan, T. M., & Lewis, N. G. (2000). Natural products (secondary metabolites). Biochemistry and Molecular Biology of Plants, 24, 1250–1319.
  10. Das, S. (2012). Systematics and taxonomic delimitation of vegetable, grain and weed amaranths: a morphological and biochemical approach. Genetic Resources and Crop Evolution, 59(2), 289–303.
  11. Dewick, P. M. (2002). Medicinal natural products: a biosynthetic approach. John Wiley & Sons.
  12. Doughari, J. H. (2006). Antimicrobial activity of Tamarindus indica Linn. Tropical Journal of Pharmaceutical Research, 5(2), 597–603.
  13. Doughari, J. H., & Manzara, S. (2008). In vitro antibacterial activity of crude leaf extracts of Mangifera indica Linn. African Journal of Microbiology Research, 2(1), 67–72.
  14. Erdogrul, Ö. T. (2002). Antibacterial activities of some plant extracts used in folk medicine. Pharmaceutical Biology, 40(4), 269–273.
  15. Evans, C. W. (1989). Trease and Evans’ Mexican medicinal plants. J. Ethnopharmacol., Pharmacognosy, 13th Edn. Bailliere Tindall, London. Table, 1.
  16. Fenimore, D. C., & Davis, C. M. (1981). High performance thin-layer chromatography. Analytical Chemistry, 53(2), 252–266.
  17. Fransen, M., Crosbie, J., & Edmonds, J. (2001). Physical therapy is effective for patients with osteoarthritis of the knee: a randomized controlled clinical trial. The Journal of Rheumatology, 28(1), 156–164.
  18. Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. springer science & business media.
  19. Ishtiaq, S., Ahmad, M., Hanif, U., Akbar, S., & Kamran, S. H. (2014). Phytochemical and in vitro antioxidant evaluation of different fractions of Amaranthus graecizans subsp. silvestris (Vill.) Brenan. Asian Pacific Journal of Tropical Medicine, 7, S342–S347.
  20. Kar, A. (2003). Pharmacognosy and pharmacobiotechnology. New Age International.
  21. Kayonga, A., & Habiyaremye, F. X. (1987). Médecine Traditionnelle et Plantes Médecinales Rwandaíses: Enquêtes Ethnobotaniques-Préf, de Gisenyi. UNR, Butare.
  22. Kokwaro, J. O. (1976). Medicinal plants of East Africa. Retrieved from
  23. Lulekal, E., Asfaw, Z., Kelbessa, E., & Van Damme, P. (2013). Ethnomedicinal study of plants used for human ailments in Ankober District, North Shewa Zone, Amhara region, Ethiopia. Journal of Ethnobiology and Ethnomedicine, 9(1), 63.
  24. Mbugua, P. K., & Moore, D. M. (1996). Taxonomic studies of the genus Sansevieria (Dracaenaceae). In The Biodiversity of African Plants (pp. 489–492). Springer.
  25. Mithraja, M. J., Marimuthu, J., Mahesh, M., Paul, Z. M., & Jeeva, S. (2012). Inter–specific variation studies on the phyto–constituents of Christella and Adiantum using phytochemical methods. Asian Pacific Journal of Tropical Biomedicine, 2(1), S40–S45.
  26. Moody, C. J., & Harwood, L. M. (1989). Experimental organic chemistry: principles and practice. Blackwell Scientific, Oxford.
  27. Ngbede, J., Yakubu, R. A., & Nyam, D. A. (2008). Phytochemical screening for active compounds in Canarium schweinfurthii (Atile) leaves from Jos North, Plateau State, Nigeria. Res J Biol Sci, 3(9), 1076–1078.
  28. Sofowora, A. (1996). Research on medicinal plants and traditional medicine in Africa. The Journal of Alternative and Complementary Medicine, 2(3), 365–372.
  29. Telci, I., Toncer, O. G., & Sahbaz, N. (2006). Yield, essential oil content and composition of Coriandrum sativum varieties (var. vulgare Alef and var. microcarpum DC.) grown in two different locations. Journal of Essential Oil Research, 18(2), 189–193.
  30. Wilkin, P. (2008). Flora of Tropical East Africa. Dracaenaceae. JSTOR.
  31. Williamson, E. M. (2001). African traditional medicine-a dictionary of plant use and applications. Medpharm Scientific Publishers. Dr Hans Dieter Neuwinger. 589 pp+ 46 pp supplement. Hardcover. ISBN 3-88763-086. Price 195DM. Phytotherapy Research, 15(6), 555–555.

How to Cite

NTAGANDA, J., Habarurema, G., Habinshuti, J., Rutikanga, A., & Ndayambaje, J. B. (2020). Phytochemical Screening and in vitro Antimicrobial Activity of Dracaena Afromontana Leaves. Discovery Phytomedicine - Journal of Natural Products Research and Ethnopharmacology, 7(1), 7–11.