Skip to main content Skip to main navigation menu Skip to site footer

An Updated review on the Bioactivities and Phytochemistry of the Nutraceutical Plant Moringa oleifera Lam (Moringaceae) as valuable phytomedicine of multi-purpose


Aims: To critically summarize and provide update knowledge on phytochemistry and pharmacological activities of Moringa oleifera with a view to provide baseline data for medicinal food fortification formulation.

Study Design: Multidisciplinary advanced bibliographic surveys, utilization of ChemBioDraw software package and dissemination of the resulted knowledge.

Place and Duration of Study: Faculty of Science, University of Kinshasa, Department of

Environmental Science, University of Gbadolite and Faculty of Science, University of Kisangani, the Democratic Republic of the Congo, between March and June 2018.

Methodology: A deep literature search was carried out to obtain information about the phytochemistry and pharmacognosy of M. oleifera from various established scientific databases such as PubMed, PubMed Central, Science Direct and Google scholar. The scientific name of this plant species was used as a keyword for the search, along with the terms phytochemistry and bioactivity or pharmacognosy. The chemical structures of the M. oleifera naturally occurring compounds were drawn using ChemBioDraw Ultra 12.0 software package.

Results: Comparative analysis of the literature revealed that Moringa oleifera is traditionally used to treat several ailments. This plant is reported to possess various pharmacological properties such as antioxidant, antibacterial, anti-inflammatory, antidiabetic, antifungal, antispasmodic, anticancer, antipyretic, anti-proliferative, wound healing, and antidyslipidemic, CNS effects as well as it is efficient against infertility. These properties are due to the presence of numerous naturally occurring phytochemicals like tannins, alkaloids, phenols, glycosides, flavonoids and steroids while its proximate composition makes it very relevant in daily life as nutraceutical.

Conclusion: The present review can, therefore, help inform future scientific research towards the development of novel drugs of relevance from M. oleifera to improve human health and wellbeing. Especially, M. oleifera could serves as drug candidates for Sickle cell anemia treatment and others ailments of relevance in developing world like Democratic Republic of the Congo.


  1. Ngbolua K.N., Inkoto C.L., Bongo G.N., Moke L.E., Lufuluabo G.L., Masengo C.A., Tshibangu D.S.T., Tshilanda D.D., Mpiana P.T. (2018). Phytochemistry and Bioactivity of Annona reticulata L. (Annonaceae): A Mini-review; South Asian Res. J. Nat. Prod. 1(1): 1-11.
  2. Inkoto L.C., Bongo N.G., Kapepula M.P., Masengo A.C., Gbolo Z.B., Tshiama C., Ngombe K.N., Iteku B.J., Mbemba F.T., Mpiana P.T., Ngbolua K.N. (2018). Microscopic features and chromatographic fingerprints of selected congolese medic- inal plants: Aframomum alboviolaceum (Ridley) K. Schum, Annona senegalensis Pers. and Mondia whitei (Hook.f.) Skeels. Emergent Life Sci. Res. 4(1):1-10.
  3. Ngbolua K.N., Mihigo S.O., Mpiana P.T., Inkoto C.L., Masengo C.A., Tshibangu D.S.T., Gbolo B.Z., Baholy R., Fatiany P.R. (2016). Ethno-pharmacological survey and ecological studies of some plants used in traditional medicine in Kinshasa city (Democratic Republic of the Congo). Tropical Plant Res. 3(2):413-427.
  4. Ngbolua K.N., Inkoto C.L., Bongo G.N., Lufuluabo G.L., Kutshi N.N., Masengo C.A., Kavumbu S.M., Gbolo B.Z., Tshilanda D.D., Mpiana P.T. (2018). Microscopy features, Phytochemistry and Bioactivity of Mondia whitei L. (Hook F.) (Apocynaceae): A mini-review, Discovery Phytomedicine 5(3): 34-42.
  5. Ngbolua K.N., Mihigo S.O., Liyongo C.L., Masengo C.A., Tshibangu D.T., Zoawe B.G., Robijaona B., Fatiany P.R., Mpiana P.T. (2016). Ethno-botanical survey of plant species used in traditional medicine in Kinshasa city (Democratic Republic of the Congo); tropical plant research 3(2): 413–427.
  6. Leone A., Spada A., Battezzati A., Schiraldi A., Aristil J., Bertoli S. (2015). Cultivation, genetic, ethno pharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int. J. Mol. Sci. 16:12791–12835.
  7. Sunil K.S., Jhade D.N., Rajendra C. (2016). Moringa oleifera Lam. A Study of Ethnobotany, Nutrients and Pharmacological Profile. Res. J. Pharm. Biol. Chem. Sci. 7(5): 2158-2165.[274].pdf.
  8. Saini R.K., Manoj P., Shetty N.P., Srinivasan K., Giridhar P. (2014a) Dietary iron supplements and Moringa oleifera leaves influence the liver hepcidin messenger RNA expression and biochemical indices of iron status in rats. Nutr. Res. 34:630–638.
  9. Saini R.K., Prashanth K.V.H., Shetty N.P., Giridhar P. (2014b). Elicitors, SA and MJ enhance carotenoids and tocopherol biosynthesis and expression of antioxidant related genes in M. oleifera Lam. leaves. Acta Physiol. Plant 36: 2695–2704.
  10. Saini R.K., Shetty N.P., Giridhar P. (2014c). Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. cultivars from India by LC–MS. Eur. Food Res. Technol. 238: 971–978.
  11. Saini R.K., Shetty N.P., Giridhar P. (2014d). GC-FID/MS analysis of fatty acids in Indian cultivars of M. oleifera: potential sources of PUFA. J. Am. Oil Chem. Soc. 91: 1029–1034.
  12. Saini R.K. (2015). Studies on enhancement of carotenoids folic acid iron and their bioavailability in M. oleifera and in vitro propagation. University of Mysore, Mysore.
  13. Farooq F., Rai M., Tiwari A., Khan A.A., Farooq S. (2012). Medicinal properties of Moringa oleifera: an overview of promising healer. J. Med. Plants Res. 6: 4368–4374.
  14. Mbikay M. (2012). Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review. Front. Pharmacol. 3: 24. doi:10.3389/fphar.2012.00024.
  15. Pandey A., Pradheep K., Gupta R., Divya B. (2011). Drumstick tree (Moringa oleifera Lam.): a multipurpose potential species in India. Genet. Resour. Crop Evol. 58(3): 453–460. doi:10.1007/s10722-010-9629-6.
  16. Hasan P.N.S., Basanagouda M.P. (2013). Pharmacognostic and phytochemical investigations on the bark of Moringa oleifera Lam. Indian J. Natural Prod. Resources 4(1): 96-101.
  17. Padayachee B., Baijnath H. (2012). An overview of the medicinal importance of Moringaceae. J. Med. Plants Res. 6: 5831–5839.
  18. Stevens G.C., Baiyeri K.P., Akinnnagbe O. (2013). Ethno-medicinal and culinary uses of M. oleifera Lam. in Nigeria. J. Med. Plants Res. 7: 799–804.
  19. Nadkarni K.M. (2005). Indian Materia Medica; Bombay Popular Prakashan Mumbai 1: 811-816.
  20. Chopra R.N., Nayar S.L., Chopra I.C. (1956). Glossary of Indian Medicinal Plants, Council of Scientific and Industrial Research, New Delhi.
  21. Warrier P.K., Nambiar V.P.K., Ramankutty C. (1995). Indian Medicinal Plants: A compendium of 500 species. Orient Longman Private Limited, Madras 4: 59-64.
  22. Anwar F., Latif S., Ashraf M., Gilani A.H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 21: 17-25.
  23. Faizi S., Siddiqui B., Saleem R., Siddiqui S., Aftab K., Gilani A.H. (1994). Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J. Nat. Prod. 57(9): 1256-61.
  24. Bennett R.N., Mellon F.A., Foidl N., Pratt J.H., Du pont M.S., Perkins L., Kroon P.A. (2003). Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. and Moringa stenopetala L. J. Agric. Food Chem. 51(12): 3546-3553.
  25. Guevara A.P., Vargas C., Sakurai H., Fujiwara Y., Hashimoto K., Maoka T., Kozuka M., Ito Y., Tokuda H., Nishino H. (1999). An anti-tumor promoter from Moringa oleifera Lam. Mutation Res. 440(2): 181-188.
  26. Shanker K., Gupta M.M., Srivastava S.K., Bawankule D.U., Pal A., Khanuja S.P.S. (2007). Determination of bioactive nitrile glycoside(s) in drumstick (Moringa oleifera) by reverse phase HPLC, Food Chem. 105: 376-82.
  27. Murakami A., Kitazono Y., Jiwajinda S., Koshimizu K., Ohigashi H.N. (1998). A Thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation, Planta Med, 64(4): 319-23.
  28. Faizi S., Siddiqui B., Saleem R., Siddiqui S., Aftab K., Gilani A.H. (1995). Fully acetylated carbamate and hypotensive thiocarbamate glycosides from Moringa oleifera. Phytochemistry 38(4): 957-963.
  29. Kulkarni Y.A., Gokhale S.B., Yele S.U., Surana S.J., Tatiya A.U. (2011). Pharmacognostical studies and preliminary phytochemical investigations on the bark of Persea macrantha (Nees) Kosterm (Lauraceae), Indian J. Nat. Prod. Resour. 2(2): 211-217.
  30. Mughal M.H., Ali G., Srivastava P.S., Iqbal M. (1999). Improvement of Drumstick (Moringa pterygosperms Gaertn.): A Unique Source of Food and Medicine through Tissue Culture. Hamdard Medical 42(1): 37-42.
  31. Barreto M.B., Bezerra A.M.E., Freitas J.V.B., Gramosa M.V., Nunes E.P., Silveira E.R. (2009). Constituintes quimicos volateis e nao-volateis de Moringa oleifera Lam., Moringaceae. Revista Brasileira de Farmacognosia, Joao Pessoa 19: 893-897.
  32. Murakami A., Kitazono Y., Jiwajinda S., Koshimizu K., Ohigashi H. (2007). Niaziminin, a thiocarbonate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation. Planta Medica 64: 319-323.
  33. Makkar H.P.S., Becker K. (1996). Nutritional value and anti-nutritional components of whole and ethanol extracted from Moringa oleifera leaves. Animal Feed Science and Technology 63: 211-228.
  34. Manguru L.O.A., Lemmen P. (2007). Phenolics of Moringa oleifera leaves. Natural Product Res. 21: 56-68.
  35. Ogunbinu A.O., Flamini G., Cioni P.L., Adebayo M.A., Ogunwande I.A. (2009). Constituents of Cajanus cajan (L.) Millsp., Moringa oleifera Lam., Heliotropium indicum L. and Bidens pilosa L. from Nigeria. Natural product communications, 4: 33-39.
  36. Berkovich L., Earon G., Ron I., Rimmon A., Vexler A., Lev-Ari S. (2013). Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med. 13: 212- 219.
  37. Ping-Hsien C., Chi-Wei L., Jia-Ying C., Murugan M., Bor-Jinn S., Hueih-Min C. (2007). Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresource Technology 98: 232–236.
  38. Mishra G., Singh P., Verma R., Kumar S., Srivastav S., Jha K.K., Khosa RL. (2011). Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharmacia letter 3: 141-164.
  39. Sashidhara K.V., Rosaiah J.N., Tyagi E., Shukla R., Raghubir R., Rajendra S.M. (2009). Rare dipeptide and urea derivatives from roots of Moringa oleifera as potential anti-inflammatory and antinociceptive agents. Eur. J. Med. Chem. 44: 432-436.
  40. Abdulkarim S.M., Long K., Lai OM., Muhammad S.K.S., Ghazali H.M. (2005). Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chem. 93: 253-263.
  41. Upadhyay P., Yadar M.K., Mishra S., Sharma P., Purohit S. (2015). Moringa oleifera: A review of the medical evidence for its nutritional and pharmacological properties. Int. J. Res. Pharm. Sci. 5(2): 12-16.
  42. Pullen J., Saeed K. (2014). Experimental study of the factors affecting the oxidation stability of biodiesel FAME fuels. Fuel Process Technol. 125: 223–235.
  43. Jed W., Fahey S.D. (2005). Moringa Oleifera: A review of the medical evidence for its nutritional, therapeutic and prophylactic properties. Part 1. Trees for life J. 1: 5
  44. Teixeira E.M.B., Carvalho M.R.B., Neves V.A., Silva M.A., Arantes-Pereira L. (2014). Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem. 147: 51–54.
  45. Gowrishankar R., Kumar M., Menon V., Mangala D.S., Saravanan M., Magudapathy P., Panigrahi B.K., Nair K.G.M., Venkataramaniah K. (2010). Trace Element Studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) Using PIXE. Biol. Trace Elem. Res. 133: 357–363.
  46. Suphachai C. (2014). Antioxidant and anticancer activities of Moringa oleifera leaves. J. Med. Plants Res. 8(7): 318-325.
  47. Nambiar VS., Guin P., Parnami S., Daniel M. (2010). Impact of antioxidants from drumstick leaves on the lipid profile of hyperlipidemics. J. Herb Med. Toxicol. 4: 165–172.
  48. Sangeeta S., Mathur R., Anand O.P. (1988). Antifertility profile of the aqueous extract of Moringa oleifera roots. J. Ethnopharmaco;22: 51-62;
  49. Siddhuraju P., Becker K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agro-climatic origins of drumstick tree (Moringa oleifera Lam.) J. Agric. Food Chem. (15): 2144–2155.
  50. Armando C., Amarillis S., Sofia R., Lorena Z., De-Leonb E., Federico N. (1992). Pharmacologic properties of Moringa oleifera. Part 2: Screening for antispasmodic, anti-inflammatory and diuretic activity. J. Ethnopharmacol. 36: 233-237.
  51. Ahmad S., Shah S.M., Alam M.K., Usmanghani K., Azhar I., Akram M. (2014). Antipyretic activity of hydro-alcoholic extracts of Moringa oleifera in rabbits. Pak. J. Pharm. Sci. 27(4): 931-4.
  52. Sreelatha S., Jeyachitra A., Padma PR. (2011). Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem Toxicol 49:1270–1275.
  53. Renata A.C., Oscarina V.S., Ernesto H., Jair M., Francisco G.B., Regine Helena Sd-F.V. (2017). Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species BioMed Research International.
  54. Viera G.H., Mourão J.A., Angelo A.M., Costa R.A., Vieira RH. (2010). Antibacterial effect (in vitro) of Moringa oleifera and Annona muricata against Gram positive and Gram negative bacteria, Rev. Inst. Med. Trop. Sao Paulo 52(3): 129-32.
  55. Lambole V., Upendra K. (2012). Effect of Moringa oleifera Lam. on normal and dexamethasone suppressed wound healing; Asian Pacific J. Trop. Biomed. 219-223.
  56. Divi S.M., Bellamkonda R., Dasireddy S.K. (2012). Evaluation of antidiabetic and antihyperlipedemic potential of aqueous extract of Moringa oleifera in fructose fed insulin resistant and STZ induced diabetic Wistar rats: A comparative study, Asian J. Pharm. Clin. Res. 5: 67–72.
  57. Al-Malki A.L., El Rabey H.A. (2015). The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats, BioMed Res. Int. 2015: 381040. doi: 10.1155/2015/381040.
  58. Lalas S., Tsaknis J. (2002). Characterization of Moringa oleifera seed oil variety Periyakulam- 1. J. Food Compos. Anal. 15: 65-77.
  59. Wright E., Scism-Bacon J.L., Glass L.C. (2006). Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int. J. Clin. Pract. 60: 308–314.
  60. Kaneto H., Kajimoto Y., Miyagawa J., Matsuoka T., Fujitani Y., Umayahara Y., Hanafusa T., Matsuzawa Y., Yamasaki Y., Hori M. (1999). Beneï¬cial Effects of Antioxidants in Diabetes: possible protection of pancreatic β-cells against glucose toxicity. Diabetes 48: 2398-2406.
  61. Prentki M., Nolan C.J. (2006). Islet β-cell failure in type 2 diabetes. J. Clin. Invest. 116: 1802–1812.
  62. Kamalakkannan N., Prince PSM. (2006). Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin. Pharmacol. Toxicol. 98: 97–103.
  63. Aronson D., Rayfield E.J. (2002). How hyperglycemia promotes atherosclerosis: molecular mechanisms, Cardiovasc. Diabetol. 1:1.
  64. Chumark P., Khunawat P., Y. Sanvarinda, Phornchirasilp S., Morales NP., Phivthong-ngam L., Ratanchamnong P., Srisawat S., Pongrapeeporn KU. (2008). The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves, J. Ethnopharmacol. 116: 439–44.
  65. Abdulrahman I.A., Raju S.K., Natarajan A., Alireza B., Yalda K., Mohamed A.A. (2015). An Expedient Synthesis, Acetylcholinesterase Inhibitory Activity, and Molecular Modeling Study of Highly Functionalized Hexahydro-1,6-naphthyridines, BioMed Research Int. 1–13.
  66. Arun G., Malathi D., Geetha K. (2011). Anti-diabetic property of drumstick (Moringa oleifera) leaf tablets. Int. J. Health Nutr. 2: 1–5.
  67. Dangi S.Y., Jolly C.I., Narayana S. (2002). Antihypertensive activity of the total alkaloids from the leaves of Moringa oleifera. Pharm. Biol. 40: 144–148.
  68. Adamu I.M., Aminu S.H., Hassanah M., Jabir A.M. (2017). Phytochemical Constituents, Biological Activities, Therapeutic Potentials and Nutritional Values of Moringa oleifera (Zogale): A Review. J. Drug Design and Med. Chem. 3(4): 60-66.
  69. Nwaoguikpe R.N., Ujowundu C.O., Igwe C.U., Dike C.U. (2015). The effects of Moringa oleifera leaves extracts on Sickle Cell Hemoglobin. J. Scientific Res. & Reports 4(2): 123-132.
  70. Randrantoarimbola L., Rafalimanantsoa J., Ratiarimananjatovo N., Randriamanantena A.A., Rakotondrazafy J.I.N., Ngbolua K.N., Robijaona B. (2018). Valorization of local products to fight against chronic malnutrition in Malagasy rural households using Food supplements bio-fortified by the leaves powder of Moringa oleifera Lam. J. of Adv. Med. & Life Sci. 6(4): 1-4. DOI: 10.5281/zenodo.1303307.

How to Cite

Ngbolua, K.- te-N. (2018). An Updated review on the Bioactivities and Phytochemistry of the Nutraceutical Plant Moringa oleifera Lam (Moringaceae) as valuable phytomedicine of multi-purpose. Discovery Phytomedicine - Journal of Natural Products Research and Ethnopharmacology, 5(4), 52–63.




Search Panel